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Abstract

Cross-national comparisons of IQ have become common since the release of a large dataset of
international 1Q scores. However, these studies have consistently failed to consider the potential lack of
independence of these scores based on spatial proximity. To demonstrate the importance of this
omission, we present a re-evaluation of several hypotheses put forward to explain variation in mean 1Q
among nations namely: (i) distance from central Africa, (ii) temperature, (iii) parasites, (iv) nutrition, (v)
education, and (vi) GDP. We quantify the strength of spatial autocorrelation (SAC) in the predictors,
response variables and the residuals of multiple regression models explaining national mean IQ. We
outline a procedure for the control of SAC in such analyses and highlight the differences in the results
before and after control for SAC. We find that incorporating additional terms to control for spatial
interdependence increases the fit of models with no loss of parsimony. Support is provided for the
finding that a national index of parasite burden and national IQ are strongly linked and temperature also
features strongly in the models. However, we tentatively recommend a physiological — via impacts on
host-parasite interactions — rather than evolutionary explanation for the effect of temperature. We
present this study primarily to highlight the danger of ignoring autocorrelation in spatially extended
data, and outline an appropriate approach should a spatially explicit analysis be considered necessary.

Keywords: 1Q, intelligence, spatial autocorrelation, geography, disease, statistics



1. Introduction

The measurement of intelligence is a controversial field (Gould, 1981; Jensen, 1982), particularly where
comparisons are made among races (Hunt & Carlson, 2007) or nations (Lynn & Vanhanen, 2006). The
recent compilation of an international dataset of 1Q results from a wide range of countries (Lynn &
Vanhanen, 2006) has made possible broad comparisons between nations, of which a great many have
already been published (see Wicherts, Dolan, & van der Maas, 2010 for a review of this literature).
While criticisms have been levelled at how this 1Q dataset was collated (Wicherts, Dolan, & van der
Maas, 2010), there are statistical issues with international comparisons even with perfectly-collated
data due to the potential lack of independence of individual data points driven by spatial proximity. We
first highlight the general nature of this problem and explain why it matters. We then re-evaluate a set
of hypotheses that have been put forward to explain variation in national 1Q as a case study to provide
guidance for future studies. Note that while the global variation in mean national 1Q has received
considerable recent attention, it remains debateable whether variation in national 1Q is a strict
reflection of variation in underlying cognitive abilities that they are proposed to measure, since their
psychometric properties may also vary across space (Wicherts, Dolan, Carlson, & van der Maas, 2010)
and time (Wicherts, et al., 2004). For example, recent work has indicated that IQ score may vary with
individual motivation, and that this simple phenomenon may confound relationships between individual
IQ and late-life outcomes (Duckworth, Quinn, Lynam, Loeber, & Stouthamer-Loeber, in press). Thus,
while we have followed others in focusing on national mean IQ as the key dependent variable of
interest, we recognize at the outset that it has significant limitations as a measure of latent intelligence.

2. Why spatial autocorrelation matters

Recently, Gelade (2008) used spatial autocorrelation analysis to show that nations that are geographical
neighbors have more similar mean IQs than nations that are far apart. One might equally find positive
autocorrelation in candidate predictor variables of national mean IQ such as average temperature, or
national per capita income, reflecting Tobler’s (1970) First Law of Geography: “everything is related to
everything else, but near things are more related than distant things”.

Acknowledgement of spatial autocorrelation in response variables and/or their potential predictors is
extremely important. As an example from the intelligence literature, nearby nations may have similar
sized values of a response variable (e.g. national 1Q) and similar sized values of any given predictor (e.g.
mean temperature). This association may stem from a causal relationship, i.e. the sites share a similar
climate regime and this results in a similar national mean IQ. However, it may be that there are one or
more underlying factors that drive both variables, resulting in a correlation without a causal
relationship. One such example is local movement of peoples between countries that share similar
temperature attributes simply through spatial proximity. Thus, the apparent association between the
two variables may be due to their proximity rather than independently driven causal relationships.
Classical significance testing is based on the assumption of independence and if one cannot be confident
that each data point represents an independent realisation of the same causal process, the significance
values become unreliable. It seems intuitively unreasonable, for example, to compare data for France,
Germany and Belgium with Ghana, Togo and Benin, assuming each to be entirely independent. We have
illustrated precisely this problem in Figure 1. Countries on the same continent are more similar to one
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another than to countries on different continents both in terms of national mean 1Q and any number of
potential predictors (e.g. disease burden as shown in Figure 1 and as hypothesised by Eppig et al., 2010).
Additional statistical controls must be taken into account to explicitly deal with the spatial relationships
among data points. Specifically, without controlling for autocorrelation, tests of association between
spatially autocorrelated variables can lead to an inflated proportion of Type | errors (rejection of the null
hypothesis when true), since the effective sample size is always smaller than the total number of
genuinely independent data points (Clifford, Richardson, & Hemon, 1989; Legendre & Fortin, 1989;
Legendre & Legendre, 1998). The problem may also be more severe than simply inflating Type | error
rate. In particular, Lennon (2000) argued that correlations between an autocorrelated response variable
and a set of candidate predictors will be strongly biased in favour of identifying autocorrelated
predictors as significant over non-autocorrelated predictors.

While many papers have highlighted the problems posed by spatial autocorrelation in data, far fewer
studies have offered a solution (Dale & Fortin, 2002). These solutions include discarding data, adjusting
the Type | error rate, adjusting the effective sample size to control for lack of independence and
accounting for spatial structure directly in the fitted model (Dale & Fortin, 2002). Whatever the remedy,
one simply cannot ignore spatial autocorrelation and hope for the best (Beale, Lennon, Yearsley,
Brewer, & Elston, 2010). Of course, it is quite possible for a spatially autocorrelated predictor to
generate independent yet spatially autocorrelated responses when the response variable would not
otherwise be autocorrelated. Using the example above, a positive correlation between national mean
IQ and temperature would, by virtue of the spatial structure in temperature, produce a spatial structure
in national IQ. Thus the two variables would be spatially autocorrelated but with an independent
relationship. Therefore, conservatively controlling for spatial autocorrelation in predictor and response
can “throw the baby out with the bathwater” and leave researchers with little additional variation to
explain other than processes operating at different (usually smaller) spatial scales. Arguably therefore,
controlling for a lack of spatial independence is only essential when the residuals of fitted models
continue to show significant spatial signature (Diniz-Filho, Bini, & Hawkins, 2003) above and beyond
those accounted for by the predictor, which will arise when the response continues to show a lack of
independence even after controlling for the predictor’s effect. Here we adopt this conservative
approach in re-evaluating competing hypotheses to explain geographical patterns in national mean IQ.
We show that spatial autocorrelation is present not only in the predictors of national mean I1Q, but also
in the residuals of models used to describe national IQ. The best fitting models exhibit greater
explanatory power after control for spatial autocorrelation so, rather than obliterate any pattern, they
remain capable of yielding insights into the question of how and why IQ varies across nations.

3. Competing hypotheses to explain geographical variation in mean IQ

Since Lynn and Vanhanen published their monographs on geographical variation in 1Q (Lynn &
Vanhanen, 2001), a number of competing hypotheses have emerged to explain variation between
countries. We present a subset of representative hypotheses which can be classified using three broad
categories:

Evolutionary hypotheses:



Distance from the environment of evolutionary adaptedness (hereafter, "Dga") (Kanazawa,
2008) — Kanazawa proposed that the human brain was adapted to a particular ancestral
environment: the savannah of central Africa. In order to exploit environments that differ from
this habitat, the human brain would need to be able to adapt to solve new challenges.
Kanazawa proposes that this requirement for greater intelligence is what selected for higher-1Q
individuals in locations further from the environment of evolutionary adaptedness (EEA).
Temperature (Kanazawa, 2008; Templer & Arikawa, 2006) — In a similar hypothesis, a variety of
authors have suggested that cold weather and harsh winters select for higher intelligence to be
able to cope with the extremes of climate.

Physiological hypotheses:

Nutrition (Lynn, 1990) — Lynn observed that changes in height and head size were occurring over
time. He hypothesised that this was the result of increasing levels of nutrition, citing evidence
that nutritional deficiencies retard growth. Citing correlations between head size, brain size and
IQ, Lynn then proposes that increases in nutrition are also increasing national mean IQ.

Parasite burden (Eppig, Fincher, & Thornhill, 2010) — Significant international variation in IQ can
be explained by variation in the disability-adjusted life years (DALY, a measure of disease
burden) due to parasitic and infectious disease. The reasoning behind this hypothesis is that the
response to parasites by the immune system requires energy which can then not be used in
cognitive development.

Socioeconomic hypotheses:

Education (Barber, 2005) — This hypothesis assumes that the amount of time put into education
is related to the extent of cognitive development, which then influences IQ. Evidence for such a
causal relationship has been presented using longitudinal studies (e.g. Richards & Sacker, 2003).
Marks (2010) has argued that geographical variation in 1Q is purely an artefact of literacy levels.
However, literacy data are no longer collected in many high-income countries which are
typically considered to be 99% literate (e.g. United Nations Development Programme, 2009).
Here we assume that Marks' hypothesis based on literacy can be tested using data on
education.

Gross domestic product (GDP) (Lynn & Vanhanen, 2002) — GDP per capita is related to
development which, in turn, is related to the average amount of education. For reasons
described in the previous hypothesis, it might be expected that a higher general level of
education would result in higher 1Q.

All studies cited above have provided significant statistical results to support their hypotheses.

However, none so far has either tested for or controlled for the spatial structure of the data in a rigorous

way.

Outline of the analysis



We begin by describing the sources for our data (which are provided in Appendix 1). We then
demonstrate the extent of the spatial autocorrelation in the raw predictor and response variables. We
show that strong correlations exist between all six candidate predictors and three measures of national
mean 1Q, even when spatial autocorrelation is taken into account. We use an exhaustive model
selection method to find the most parsimonious model to explain variation in national mean IQ. Next,
and most importantly, we show that the residuals of these best-fit multiple regression models exhibit
spatial autocorrelation, which even by the least conservative standards necessitates the control of this
autocorrelation in the analysis of the model (Diniz-Filho, et al., 2003). Finally, we then carry out the
model selection procedure, this time including control for SAC.

Data sources

Data sources were used mostly as specified in Eppig et al. (2010): national IQ data were taken from Lynn
and Vanhanen (2006) with 17 alternative values from Wicherts, Dolan, & van der Maas (2010); disability
life-adjusted year (DALY) values for infectious and parasitic diseases (hereafter "IPD") and nutritional
deficiencies ("Nut") were generated by the World Health Organisation (2004); average years in
education ("AVED"), % population reaching enrolment in secondary education ("Sec_E") and %
population completing secondary education ("Sec_C") from Barro & Lee (2010) and data at
http://www.barrolee.com/ for 2010; and GDP per capita ("GDP") from the CIA World Factbook (2007).
Three 1Q datasets were defined, as in Eppig et al: Lynn and Vanhanen's (2006) data based only on

censuses ("LVCD"), Lynn and Vanhanen's data with estimates for missing values ("LVE") and LVE with the
17 alternative values from Wicherts, Dolan, & van der Maas (2010) ("WEAM"). Distance from the point
5°S, 25°E (the "environment of evolutionary adaptedness") to the centroid of each country ("Dg,") was
calculated in ArcGIS v9.2 (ESRI, 2006). Centroids were also used in subsequent control for SAC. As an
index of temperature, we calculated the mean temperature of the coldest quarter ("MTCQ") for each
country using the WORLDCLIM dataset (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005) in ArcGIS v9.2
(ESRI, 2006). Countries lacking any data were excluded leaving a total of 137 countries for the
comparison (Table S1). IPD, Nut, GDP and D¢, Were log-transformed for normality. The three education
measures were highly collinear (Sec_E vs. Sec_C, r=0.942, p<0.001; Sec_E vs. AVED, r=0.935, p<0.001;
Sec_C vs. AVED, r=0.892, p<0.001). Therefore, the three education variables were entered into a
principal components analysis to produce a single education measure ("ED") from the first principal
component which explained 97.7% of the variance in the three measures.

Data analysis

(i) SAC in predictors and responses

A statistical measure of spatial autocorrelation, Moran's |, was calculated for each of the three national
IQ datasets (the response variables) and the six predictors described above and in Table 1. An
alternative measure of SAC is Geary's ¢, which is approximately inversely related, though not identical,
to Moran's | (Sokal & Oden, 1978). We use Moran's | as it gives a more global indicator of spatial
autcorrelation while Geary's C is more sensitive to local differences. Moran's | also tends to perform
better in ecological analyses, describing patterns more cleanly and being easier to interpret (Legendre &
Fortin, 1989).


http://www.barrolee.com/

A distance matrix was first calculate based on great circle distances between each pair of country
centroids using the "distCosine" function in the R package geosphere (Hijmans, Williams, & Vennes,
2011). Great circle distances take into account the curvature of the earth when calculating distances
between two sets of latitude-longitude coordinates. The "Moran.l" function in the R package APE
(Paradis, Claude, & Strimmer, 2004) was used to calculate the global Moran's | value for each of the nine
variables. We have attached the R code for this operation in Appendix 2. To further illustrate the
pattern of SAC in the data, the three |Q variables and IPD, highlighted as the most important predictor in
a recent analysis (Eppig, et al., 2010) were analysed in SAM v4.0 (Rangel, Diniz-Filho, & Bini, 2006) over a
range of distances. SAM ("Spatial Analysis in Macroecology") is free software available from
http://www.ecoevol.ufg.br/sam/. This software provides tools to carry out a variety of analyses

including spatial eigenvector mapping, the quantification of SAC using Moran's I, and multimodel
inference using Akaike’s Information Criteria (AIC).

(ii) Correlations between national mean 1Q and predictors

Correlations between each of the predictors and the three national 1Q indices were assessed using
Pearson product-moment correlations (Table 2). Having previously demonstrated the presence of
spatial autocorrelation in the predictors and response variables, it was clear that the degrees of freedom
in the tests would be artificially inflated due to the lack of independence between data points. The
"spatial correlation" function in SAM was used to recalculate the geographically effective degrees of
freedom according to the method of Clifford et al. (1989). This allows a more accurate calculation of
statistical significance.

(iii) First model construction

Having demonstrated that all predictor variables are strongly correlated with all three national 1Q
indices, even when the lack of independence is controlled for, we were left with all six predictor
variables as viable predictors for linear regression. Extensive collinearity exists within the predictors,
which poses problems for using stepwise model selection to identify subsets of variables for use in
regression models. Wicherts, Borsboom & Dolan (2010) highlight this collinearity among socioeconomic
and health variables — and suggest that national mean 1Q is simply another indicator of development —
although the same is true for most predictors of national 1Q. If left unchanged, multicollinearity (linear
relationship between two or more variables) results in an inflation of the variance associated with
parameter estimates within multiple regression models. However, cases of multicollinearity can be
identified using variance inflation factors (VIFs) to determine the extent to which the variance
associated with each term is increased by the collinearity, where VIF>10 is considered "high"
multicollinearity (Kutner, Nachtsheim, Neter, & Li, 2005). However, we avoid this problem by using an
"exhaustive search" method to compare all possible combinations of variables (Graham, 2003). The
relative performance of the models was then judged using AIC controlling for small sample size (AlCc;
Kutner, et al., 2005). This measure of model performance incorporates goodness-of-fit as well as the
number of explanatory variables to rank models relative to one another to indicate the most
parsimonious models. Alternative model selection methods using only goodness of fit (e.g. R* or
adjusted R?) neglect the principle of parsimony, while the Bayesian information criterion (BIC, also
known as the Schwartz criterion) rests on assumptions that are rarely met with empirical data (Johnson
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& Omland, 2004). A AAICc (the difference between the AlCc of a given model and that of the top model)
of <2 indicates that there is substantial evidence for the given model above alternative candidate
models, 3 < AAICc < 7 indicates considerably less support and AAICc > 10 indicates essentially no support
(Burnham & Anderson, 2002). We also calculate R? (the proportion of overall variance explained by the
fitted model) as an absolute measure of goodness-of-fit to complement the relative measure provided
by AlCc. Six predictors yield a potential 63 models including a null model (with only a floating intercept)
and each of these was constructed in R for each of the three 1Q variables. The resulting models were
compared using the "aictab" function in the AlCcmodavg package (Mazerolle, 2010) in R. We have
provided the R code for this stage of the analysis in Appendix 3.

(iv) SAC in model residuals

As stated above, the presence of SAC in model residuals indicates a need to account for SAC in the
model itself. We tested for evidence of spatial autocorrelation in the best fitting models (for which
AAICc<2) for each of the three IQ variables. This was done by calculating global Moran's | in R, as
described above, for the residuals of each of the models.

(v) Control for SAC

Having demonstrated that the residuals of the best fitting models exhibited spatial autocorrelation, the
model selection procedure was carried out a second time with a control for SAC. The incorporation of
SAC into these models was through a technique called "spatial eigenvector mapping" (SEVM) and was
carried out in SAM. This method decomposes the spatial relationships between data into explanatory
variables which capture spatial effects at different spatial resolutions. The method can be viewed as
equivalent to a principal components analysis carried out on the distance matrix of the data (Dormann,
et al., 2007). Whereas selection of relevant components in PCA hinges on their eigenvalues, we based
selection of eigenvectors on the minimisation of Moran's | (to a threshold of 0.05) in the model
residuals. The resulting eigenvectors are then included in all models during the model selection
procedure. Global Moran's | was calculated for the residuals of each of the best fitting (AAICc<2) models
to evaluate the success of the method.

4. Results

(i) SAC in predictors and responses

LVE and WEAM data showed a positive autocorrelation that was significantly (p<0.001) different from
zero at each distance up to 3500km then a significant (p<0.01) negative autocorrelation up to 16000km.
LVCD showed a significant (p<0.001) positive autocorrelation up to 3500km and a significant (p<0.001)
negative autocorrelation to 10000km after which there was no significant spatial structure (Fig. 1).
Comparing predictors and response variables, we find that SAC is higher in national 1Q than in national
temperature (Table 1), as shown by Gelade (2008). As Gelade points out, there is an intuitive spatial
autocorrelation involving temperature where two neighbouring nations tend to have a more similar
climate than two more-distant nations. That national 1Q exhibits stronger SAC than temperature
emphasises the strength of the pattern. In fact, the only variable with higher SAC than national 1Q was
the distance from the environment of evolutionary adaptedness (Dga), Which is itself a distance
measure. What this SAC in Dge, tells us is that two points that are closer together are a more-similar
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distance from another given point. This near-tautological example of SAC is instructive in demonstrating
the importance of accounting for lack of independence in analyses.

(ii) Correlations between national 1Q and predictors

Before control for SAC, there were strong, significant (p<0.001 in all cases) correlations between all six
predictor variables and the three national IQ measures (Table 2). The proportion of variance in the
national IQ measures that was explained by the individual predictors range from 28% to 73%, with the
strongest correlations between national IQ and IPD and the weakest between IQ and Dga. When SAC
was controlled for in these pairwise correlations there were still significant correlations at the reduced
degrees of freedom. It is worth noting that the variables with higher SAC in Table 1 (IPD, Dga and
MTCQ) are those which have the greatest reduction in degrees of freedom in Table 2. However, this
method still gives us no reason to choose between the competing hypotheses as all terms remain
significant.

(iii) First model construction

An exhaustive search of models prior to control for SAC yielded very similar models for each of the three
national 1Q measures (Table 3). In each of the LVE, WEAM and LVCD measures, IPD, MTCQ and D¢
formed the top model and were contained in all models where AAICc<2. Nut also featured in the
second-ranking models in each case, and GDP featured in the third- and fourth-ranking models for LVCD.
All models explain a large proportion of the variance in the response variables (between 72.3 and
81.1%).

(iv) SAC in model residuals

Examining the residuals for SAC we see that there is highly significant autocorrelation in the residuals of
all the top models (Table 3). While this SAC is not as strong as that present in the raw data (Table 1), it
provides strong evidence for a continuing effect of spatial interdependence in the models.

(v) Control for SAC

The inclusion of spatial eigenvectors in the model selection procedure, results in a change in our
interpretation of the results. The first is that the explanatory power of all models increases (note the
adjusted R values in Table 3). The lower AICc values demonstrate that this increase in goodness-of-fit
does not come at a cost of decreased parsimony. In fact, the model fit according to AIC is substantially
better after control for SAC, with AAICc values comparing best-fit models before and after SAC of
44.875, 31.286 and 24.185 for LVE, WEAM and LVCD, respectively.

Second, the SAC of the model residuals of two of the three measures was non-significant after control
for SAC. SAC in the residuals of LVE was particularly high in the original models (Table 3) and, although
the SEVM approach reduced SAC considerably, it was still significant. It is worth noting that the SEVM
approach was designed not to render SAC non-significant, but to reduce it below a certain threshold
(Moran's | < 0.05) where it has a negligible effect. Using this criterion, the procedure was successful.
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Third, the composition of the models changes. There is consistent evidence for an effect of IPD and
MTCQ in the top models before controlling for SAC and this remains after the control is applied (Table
3). The most noticeable difference in model composition is the omission of Dga (distance from the
environment of evolutionary adaptedness) from most of the models after control for SAC. Having been
present in all top models prior to control for SAC, Dgea 0ccurs only once in the second-best fit model for
the WEAM 1Q measure. Nut also seems to increase in importance but only in the LVCD 1Q measure,
where GDP also remains in the best-fit models.

5. Discussion

We have highlighted the importance of dealing with spatial autocorrelation when analysing spatial
patterns, and re-examined competing hypotheses explaining geographical variation in national 1Q to
illustrate our case. Cross-national research in mean IQ is a relatively new field but has already produced
a number of studies which have sought predictors of variation in IQ. Such putative predictors have
included temperature and skin colour (Templer & Arikawa, 2006), evolutionary novelty (Kanazawa,
2008), irreligion (Lynn, Harvey, & Nyborg, 2009), inbreeding (Woodley, 2009) and a range of economic
factors (e.g. Dickerson, 2006). While these studies may provide interesting results, none have explicitly
considered spatial autocorrelation. It has long been appreciated (e.g. Clifford, et al., 1989) that not
accounting for spatial autocorrelation in the response variable results in inflated significance due to
overestimation of the true sample size of data. While this is true for any spatial analysis, different fields
have taken different lengths of time to address the problem. Geography was among the first (Cliff &
Ord, 1970), with ecology following later (Legendre, 1993) and other subdisciplines of biology only now
incorporating the issues into their paradigms (Valcu & Kempenaers, 2010). In this paper we highlight
the issue of spatial autocorrelation in the context of spatial variation in intelligence.

Correcting for SAC in conjunction with exhaustive model selection enables us to circumvent the twin
problems of spatial autocorrelation and collinearity among variables. This permits the most
comprehensive and statistically rigorous assessment of six potential hypotheses explaining variation in
geographical patterns in 1Q that has yet been conducted. When a comprehensive model comparison
was conducted to analyse national variation in 1Q scores, then infectious and parasitic diseases (IPD) and
temperature (mean temperature of the coldest quarter) were the only two variables consistently
included in models. Mortality and morbidity resulting from nutritional deficiencies (Nut), GDP, and
distance from the environment of evolutionary adaptedness (D) also feature in some of the best
fitting models. However, it is worth noting that Dgs becomes far less important in models after
controlling for SAC. This is not surprising given that the variable itself is, by definition, autocorrelated
across space. It seems likely that the distance from the environment of evolutionary adaptedness has
no causal link with national mean 1Q.

The case for an effect of infectious and parasitic disease burdens influencing national 1Q has been made
elsewhere (Eppig, et al., 2010). Previously, the relationship between temperature and national mean IQ
has been explained in terms of the greater cognitive demands of surviving in colder environments
(Templer & Arikawa, 2006). Given the strength of evidence for the physiological effects of disease, it
may be that temperature is acting not through an impact on the environment but through an impact on
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the interaction between humans and their diseases. Temperature influences a number of disease-
related parameters such as disease distribution (Guernier, Hochberg, & Guégan, 2004), transmission
seasons (e.g. malaria, Hay, Guerra, Tatem, Noor, & Snow, 2004), the ability of insect vectors to transmit
diseases (Cornel, Jupp, & Blackburn, 1993) and the development and survival of parasites and host
susceptibility (Harvell, et al., 2002). It may be that temperature is having an effect on national mean IQ
by mediating the response to infectious diseases rather than via environmental complexity.

We have highlighted SAC as a cause for concern in these analyses of geographic variation in 1Q and
briefly mentioned multicollinearity in the predictor variables as a second issue. While we use exhaustive
(or "all-subsets") modelling to avoid issues with collinear predictor variables and model construction, an
alternative method would be structural equation modelling (SEM, or "path analysis") (Graham, 2003);
(van der Maas, et al.,, 2006). SEM involves the explicit, a priori statement of causal and correlative
relationships between variables and provides estimates of the relative strengths of interactions. Where,
for example, changes in sanitation are thought to cause changes in disease, or changes in nutrition
cause changes in infant mortality, these effects can be stated and the direct and indirect effects on
national IQ can be assessed. While this approach shows promise for testing hypotheses of national 1Q
variation, there are cases in which the nature of relationships are unclear. For example, does GDP exert
a causal relationship on other factors? Does education improve nutrition and/or disease incidence?

Socioeconomic factors do not feature strongly in the analysis when other factors are taken into account.
GDP is present in some of the best-fitting models but it is unclear as to how this variable is acting. There
has been debate in the literature over the competence of 1Q tests to accurately measure intelligence
over a range of education or literacy levels (Barber, 2005), with some researchers claiming that global
variation in IQ is entirely an artefact of varying literacy (Marks, 2010). We find no evidence to support
this. However, we stress that our measure of education, despite being a composite statistic will not
have captured all aspects of educational experience, so as always, alternative measures could have
given different results. Intriguingly, cross-fostering studies have demonstrated that socio-economic
factors can influence 1Q, with children from high socioeconomic status (SES) parents who were
subsequently fostered by low SES parents having lower IQ scores than those children from high SES
families who were then fostered by other high SES parents. Conversely, children from low SES parents
who were fostered by high SES foster parents exhibited higher 1Q scores than did children from low SES
parents who were fostered by low SES foster parents (Capron & Duyme, 1989). It is worth noting that
this study was conducted only in France, and so the results may not be applicable to a global study with
far greater variations in SES. It may be that SES acts at a smaller scale that is dwarfed by other factors
on a global level.

Like all correlative studies, we cannot ascribe causality on the basis of statistical significance and so all
potential relationships identified require further investigation. Here is not the place to present any
alternative hypotheses in depth, especially on the basis of automated searches for candidate models
rather than directed tests. However, it is possible that reduced parasite prevalence may play a role in
the generation of the Flynn Effect, the apparent increase in mean IQ over time (but c.f. Wicherts, et al.,
2004). Other studies have shown that generational increases in intelligence are focused at the lower
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end of the IQ distribution (Colom, Lluis-Font, & Andrés-Pueyo, 2005). Parasites in host populations
commonly exhibit aggregation, with a few individuals carrying large numbers of parasites and most
individuals carrying few (Anderson & Gordon, 1982). It could be reasoned that either improved hygiene
or clinical intervention for diseases and parasites is benefitting those few heavily infected individuals
disproportionately and, if those individuals also exhibit low 1Q as a result of their disease burden, IQ
would also increase to the greatest extent at the lower end of the scale. Thus, a parasite-induced
depression in 1Q with subsequent improvement due to hygiene and medicine could provide an
explanation for the Flynn Effect (Eppig, et al., 2010).

Controlling for autocorrelation may remove real biological patterns and this has been offered as an
argument against controlling for both spatial (Legendre, 1993) and phylogenetic (Ricklefs & Starck, 1996)
autocorrelation. However, any statistical analysis with an inherent spatial component should consider
spatial autocorrelation, if only to demonstrate that its control is not necessary. Failure to account for
this lack of independence in data violates statistical assumptions and renders statistical inference
invalid. The initial dogmatism with which controls for spatial and phylogenetic autocorrelation were
enforced has now given way to an acceptance that such controls are not always necessary. However,
with the advent of numerous tools and techniques (such as those presented here) for assessing this
need, we encourage researchers to at least give the topic due consideration as it can substantially
influence results.
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Tables

Table 1 — Three measures of national 1Q and six predictor variables with the extent of spatial
autocorrelation (global Moran's 1). Each of these variables exhibit highly significant (denoted ~ ) spatial
structuring, in that we can readily reject the null hypothesis of no spatial structure (p<0.001). N=137,
except for LVCD where N=88.

Variable Abbreviation  Moran's |
National 1Q (Lynn and Vanhanen including estimates) LVE 0.312"
National 1Q (Lynn and Vanhanen with Wicherts et al. (2010) WEAM 0.286""
alternative values)

National 1Q (Lynn and Vanhanen's census data) LVCD 0.253""
Infectious and parasitic disease burden IPD 0.321"
Nutritional deficiency burden Nut 0.199™"
Mean temperature of the coldest quarter MTCQ 0.275""
Education Ed 0.205
Gross domestic product (per capita) GDP 0.221""
Distance from the environment of evolutionary adaptedness Deea 0.359""
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Table 2 — Product moment coefficients and significance of correlations between three national 1Q

measures (see text for details) and eight putative predictors (see text for definitions) before (r and p)

and after (p*=corrected p-value, df*=estimated corrected degrees of freedom) control for spatial

autocorrelation. Degrees of freedom prior to correlation for autocorrelation are 135 for LVE and WEAM
and 85 for LVCD.

LVE (n=137) WEAM (n=137) LVCD (n=88)

r p p* df* r p p* df* r p p* df*
IPD -0.854 <0.001 0.002 7.65 -0.812 <0.001 0.003 8.60 -0.855 <0.001 0.003 7.17
Nut -0.748 <0.001 0.002 12.76 -0.718 <0.001 0.002 14.09 -0.753 <0.001 0.003 10.95
MTCQ -0.642 <0.001 0.026 9.73 -0.630 <0.001 0.022 10.87 -0.671 <0.001 0.018 9.83
Ed 0.638 <0.001 0.008 13.81 0.606 <0.001 0.009 15.32 0.707 <0.001 0.005 11.96
GDP 0.717 <0.001 0.003 12.76 0.680 <0.001 0.004 14.18 0.795 <0.001 0.002 10.32
Deea 0.605 <0.001 0.031 10.74 0.531 <0.001 0.049 12.15 0.594 <0.001 0.011 15.29
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Table 3 — Model selection table for exploratory analysis before (SAC is "no") and after (SAC is "yes")

control for spatial autocorrelation. For definitions of model terms see text and Table 1. Significance of
Moran's | is indicated by: = =p<0.001, "=p>0.05. Note that after control for SAC, Moran's | for the
model explaining LVE is still significant. This is due to the SEVM routine acting to reduce the magnitude

of SAC below a specific threshold (0.05), rather than reducing the significance of the pattern.

Response SAC  Model K AlCc  AAICc w; R%’(adj) Moran's|
LVE No  IPD+MTCQ + Dga 5 836.695 0.000 0.368 0.811 0.161
IPD + MTCQ + Dgga + Nut 6 838.194 1.499 0.174 0.811 0.164""

Yes  IPD + MTCQ + SEVM 8 791.820 0.000 0.312 0.868 0.047"""

WEAM No  IPD+MTCQ + Dgea 5 869.189 0.000 0.378 0.724 0.105
IPD + MTCQ + Dgea + Nut 6 870.694 1505 0.178 0.723 0.106""

Yes  IPD+ MTCQ + SEVM 8 837.903 0.000 0.271 0.786 0.012™

IPD + MTCQ + Dgga + SEVM 9 838.751 0.848 0.177 0.787 0.006"°

LVCD No  IPD+ MTCQ + D 5 545176 0.000 0.254 0.787 0.099""
IPD + MTCQ + Nut + Deea 6 545.278 0.102 0.241 0.790 0.101°"

IPD + MTCQ + GDP + DA 6 545.616 0.441 0.204 0.789 0.100"""

IPD + MTCQ + Nut + GDP + Dgea 7 547.079 1.903 0.098 0.789 0.101""

Yes  IPD + MTCQ + Nut + SEVM 8 520.991 0.000 0.194 0.845 -0.003"

IPD + MTCQ + GDP + SEVM 8 521.294 0.303 0.167 0.845 0.004"*

IPD + MTCQ + SEVM 7 521906 0.914 0.123 0.841 0.002"*

IPD + MTCQ + Nut+ GDP + SEVM 9 522.342 1.350 0.099 0.845 -0.001"*
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Figure legends
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Figure 1 — The relationship between national mean IQ (LVE) and IPD (daily-adjusted life years due to
infectious and parasitic diseases) for 137 countries grouped by continent. Note the clear lack of
independence of the data, with African countries consistently exhibiting high IPD and low mean IQ,
while European countries consistently exhibit low IPD and high mean Q. It is unlikely that these
spatially dependent relationships arise as independent realisations of the same causal process.
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Figure 2 — Spatial autocorrelation in (A) three measures of national 1Q, and (B) a proposed explanatory
variable, namely the incidence of infectious and parasitic diseases (IPD, see text for details). Moran's | is
a measure of spatial clustering. A positive Moran's | indicates that values are more similar at a given
distance than would be expected by chance, while a negative Moran's | indicates that values are less
similar than would be expected.
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Appendix 1 — Raw data

Country/Region LVE LVCD WEAM IPD Nut WMH MTCQ Sec_E Sec_C AVED GDP DEEA Long (°E)  Lat(°N)
Afghanistan 84 -- 84 12010.86 1515.57 8 -0.22 32 20 3.33 1000 6099.23 66.024 33.841
Albania 90 -- 90 488.65 620.97 13 3.60 121.7 43.2 10.38 6400 5155.07 20.081 41.141
Algeria 83 -- 83 1974.29 439.38 17 13.14 815 47.2 7.04 7100 4397.88 2.630 28.159
Andorra 98 -- 98 27439 76.91 -- -2.40 -- - -- 44900 5790.11 1.578 42.533
Angola 68 -- 68 19078.39 2142.56 23 18.79 -- -- -- 8400 1154.33 17.541 -12.312
Antigua and Barbuda 70 -- 70 953.56 196.59 -- 24.85 -- - -- 17800 9833.34 -61.788 17.316
Argentina 93 93 93 836.38 175.63 -- 8.00 90.1 45 9.28 13400 9702.72 -65.188 -35.401
Armenia 94 -- 94 1003.55 17194 -2 -4.49 171.8 97.2 10.79 5500 5433.52 44.939 40.301
Australia 98 98 98 155.27 36.39 -- 1472 157 94.7 12.04 40000 11693.66 134.493 -25.744
Austria 100 100 100 188.31 78.77 0 -3.20 131.6 69.6 9.77 39200 5943.62 14.151 47.591
Azerbaijan 87 - 87 1993.68 509.98 3 151 - - -- 10400 5535.39 47.540 40.269
Bahrain 83 -- 83 546.60 247.13 20 17.90 129.8 63.5 9.42 38800 4415.61 50.574 26.020
Bangladesh 82 - 82 4959.85 716.59 26 19.84 56.4 25.7 4.77 1500 7757.80 90.263 23.895
Barbados 80 80 80 1371.81 122.77 -- 2420 114 27.6 9.34 17700 9544.84 -59.531 13.184
Belarus 97 - 97 664.02 35460 -5 -5.34 - - -- 12500 6515.06 28.051 53.535
Belgium 99 99 99 173.03 76.16 4 234 1314 79.6 10.57 36800 6485.28 4.669 50.633
Belize 84 - 84 1615.56 404.98 -- 22.60 53.1 27.6 9.18 8300 12687.09 -88.699 17.169
Benin 70 -- 70 10870.93 1143.10 27 25.21 33.2 175 3.25 1500 2991.75 2.338 9.628
Bermuda 90 90 90 - - - 311 - - -- 69900 10281.90 -64.760 32.305
Bhutan 80 -- 80 4542.08 861.62 10 17.50 -- - -- 4700 7882.89 90.443 27.425
Bolivia 87 87 87 3401.17 796.83 -- 0.25 106.2 62.4 9.20 4700 9812.51 -64.667 -16.713
Bosnia and Herzegovina 90 -- 90 286.73 358.41 -- 14.64 -- - -- 6400 5514.50 17.789 44.167
Botswana 70 - 70 32483.12 532.08 24 390 107 35.7 8.90 12800 1915.18 23.806 -22.185
Brazil 87 87 87 1575.02 363.48 -- 2295 779 37.6 7.18 10100 8606.73 -53.100 -10.784
Brunei 91 - 91 655.77 146.07 30 26.52 99.1 45.1 8.57 51200 10018.49 114.702 4.534
Bulgaria 93 93 93 300.30 352.63 4 043 109.5 57.4 995 12500 5310.37 25.249 42.757
Burkina Faso 68 - 68 15706.29 1405.28 33 25.61 - -- -- 1200 3526.84 -1.765 12.265
Burundi 69 -- 69 18706.93 1439.56 29 1892 11.1 49 2.69 300 578.49 29.942 -3.336
Cambodia 91 - 91 8687.43 1238.76 31 2485 241 9.3 5.77 1900 9045.27 104.946 12.718
Cameroon 64 64 64 16696.47 821.09 30 23.07 43.2 17.7 591 2300 1805.84 12.759 5.693
Canada 99 99 99 183.10 62.08 ---23.33 147.3 83.6 11.49 38200 12214.43 -98.348 61.290
Cape Verde 76 -- 76 3558.65 520.18 -- 19.38 -- - -- 3600 5868.58 -23.931 16.039
Central African Republic 64 64 71 20453.29 922.71 32 23.66 27.7 11.7 3.54 700 1380.58 20.491 6.571
Chad 68 -- 68 18199.74 1104.79 32 21.97 -- - -- 1900 2366.71 18.672 15.341
Chile 90 90 90 491.35 122.76 -- 4.80 109.8 66.8 9.74 14600 10224.69 -71.293  -37.287
China 105 105 105 985.88 252.96 7 -7.02 1069 50.4 7.55 6600 9350.61 103.841 36.567
Colombia 84 84 84 1167.21 228.23 -- 23.79 88.1 49.7 7.34 9200 10937.90 -73.073 3.903
Comoros 77 -- 77 5218.65 868.15 -- 20.50 -- - -- 1000 2206.53 43.801 -11.965
Cook Islands 89 89 89 1613.48 272.12 -- 21.80 - -- -- 9100 17127.24 -158.998 -20.673
Costa Rica 89 -- 89 511.05 131.06 -- 2273 86.2 499 8.35 10900 12201.29 -84.188 9.970
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Appendix 2 — Global Moran’s |
# This code allows the calculation of global Moran's | for a given variable in R

# Install and load the "ape" and "geosphere" packages
install.packages("ape")

install.packages("geosphere")

library(ape)

library(geosphere)

# Load data with the (i) variable of interest, (ii) latitude and (iii) longitude in different columns
data<-read.table("data.txt",header=T)

# Define a pairwise matrix with a row and column for each location
dists<-matrix(ncol=nrow(data),nrow=nrow(data))

# These two loops take each pair of latitude-longitude coordinates and calculate the distance to every
other pair of coordinates

for(x in 1:nrow(data)){

for(y in 1:nrow(data)){

# For each location, calculate the great circle distance to each other location, assuming a radius of the
# earth at 6378137m

dists[x,y]<-
distCosine(c(dataSLongitude[x],dataSLatitude[x]),c(dataSLongitude[y],dataSLatitude[y]),r=6378137)

}

}

# invert the matrix
dists.inv <- 1/dists

# define the diagonal as zero
diag(dists.inv) <- 0

# calculate Moran's | along with the associated p-value
Moran.l(dataSvariable, dists.inv)
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Appendix 3 — Multi-model inference

# This code performs multimodel inference on all possible subsets models of six variables (63 models

# including a null model) for a single response variable (LVE) without control for SAC. This code was run
# six times in total: once for each of three IQ variables without control for SAC and once for each 1Q

# variable with control for SAC. SAC was controlled for by including selected spatial eigenvectors as

# variables in all models (see main text for details).

# Install and load library "AlCcmodavg"
install.packages("AlCcmodavg")
library(AlCcmodavg)

# Load and attach data
data<-read.table("data.txt",header=T)
attach(data)

# Define the model set. This may be easier to carry out in a spreadsheet before copying to a text editor
modi1<-Im(LVE~IPD_log)
mod2<-Im(LVE~Nut_log)
mod3<-Im(LVE~MTCQ)
mod4<-Im(LVE~GDP_log)
mod5<-Im(LVE~DEEA_log)
mod6<-Im(LVE~Ed)
mod7<-Im(LVE~IPD_log+Nut_log)
mod8<-Im(LVE~IPD_log+MTCQ)
mod9<-Im(LVE~IPD log+GDP_log)
mod10<-Im(LVE~IPD_log+DEEA_log)
mod11<-Im(LVE~IPD_log+Ed)
mod12<-Im(LVE~Nut_log+MTCQ)
mod13<-Im(LVE~Nut_log+GDP_log)
mod14<-Im(LVE~Nut_log+DEEA_log)
mod15<-Im(LVE~Nut_log+Ed)
mod16<-Im(LVE~MTCQ+GDP_log)
mod17<-Im(LVE~MTCQ+DEEA_log)
mod18<-Im(LVE~MTCQ+Ed)
mod19<-Im(LVE~GDP_log+DEEA_log)
mod20<-Im(LVE~GDP_log+Ed)
mod21<-Im(LVE~DEEA_log+Ed)
mod22<-Im(LVE~IPD_log+Nut_log+MTCQ)
mod23<-Im(LVE~IPD_log+Nut_log+GDP_log)
mod24<-Im(LVE~IPD_log+Nut_log+DEEA_log)
mod25<-Im(LVE~IPD_log+Nut_log+Ed)
mod26<-Im(LVE~IPD_log+MTCQ+GDP_log)
mod27<-Im(LVE~IPD_log+MTCQ+DEEA_log)
mod28<-Im(LVE~IPD_log+MTCQ+Ed)
mod29<-Im(LVE~IPD_log+GDP_log+DEEA_log)
mod30<-Im(LVE~IPD_log+GDP_log+Ed)
mod31<-Im(LVE~IPD_log+DEEA_log+Ed)

28



mod32<-Im(LVE~Nut_log+MTCQ+GDP_log)
mod33<-Im(LVE~Nut_log+MTCQ+DEEA_log)
mod34<-Im(LVE~Nut_log+MTCQ+Ed)
mod35<-Im(LVE~Nut_log+GDP_log+DEEA_log)
mod36<-Im(LVE~Nut_log+GDP_log+Ed)
mod37<-Im(LVE~Nut_log+DEEA_log+Ed)
mod38<-Im(LVE~MTCQ+GDP_log+DEEA_log)
mod39<-Im(LVE*MTCQ+GDP_log+Ed)
mod40<-Im(LVE~MTCQ+DEEA_log+Ed)
mod41<-Im(LVE~GDP_log+DEEA_log+Ed)
mod42<-Im(LVE~IPD_log+Nut_log+MTCQ+GDP_log)
mod43<-Im(LVE~IPD_log+Nut_log+MTCQ+DEEA_log)
mod44<-Im(LVE~IPD_log+Nut_log+MTCQ+Ed)
mod45<-Im(LVE~IPD_log+Nut_log+GDP_log+DEEA_log)
mod46<-Im(LVE~IPD_log+Nut_log+GDP_log+Ed)
mod47<-Im(LVE~IPD_log+Nut_log+DEEA_log+Ed)
mod48<-Im(LVE~IPD_log+MTCQ+GDP_log+DEEA_log)
mod49<-Im(LVE~IPD_log+MTCQ+GDP_log+Ed)
mod50<-Im(LVE~IPD_log+GDP_log+DEEA_log+Ed)
mod51<-Im(LVE~Nut_log+MTCQ+GDP_log+DEEA log)
mod52<-Im(LVE~Nut_log+MTCQ+GDP_log+Ed)
mod53<-Im(LVE~Nut_log+MTCQ+DEEA_log+Ed)
mod54<-Im(LVE~Nut_log+GDP_log+DEEA_log+Ed)
mod55<-Im(LVE~MTCQ+GDP_log+DEEA log+Ed)
mod56<-Im(LVE~IPD_log+Nut_log+MTCQ+GDP_log+DEEA_log)
mod57<-Im(LVE~IPD_log+Nut_log+MTCQ+GDP_log+Ed)
mod58<-Im(LVE~IPD_log+Nut_log+MTCQ+DEEA_log+Ed)
mod59<-Im(LVE~IPD_log+Nut_log+GDP_log+DEEA_log+Ed)
mod60<-Im(LVE~IPD_log+MTCQ+GDP_log+DEEA_log+Ed)
mod61<-Im(LVE~Nut_log+MTCQ+GDP_log+DEEA_log+Ed)
mod62<-Im(LVE~IPD_log+Nut_log+MTCQ+GDP_log+DEEA_log+Ed)
mod63<-Im(LVE~1)

# Define the names of the models

model.names<-c("IPD_log", "Nut_log" , "MTCQ", "GDP_log", "DEEA_log", "Ed", "IPD_log+Nut_log" ,
"IPD_log+MTCQ", "IPD_log+GDP_log" , "IPD_log+DEEA_log" , "IPD_log+Ed" , "Nut_log+MTCQ",
"Nut_log+GDP_log" , "Nut_log+DEEA log", "Nut_log+Ed" , "MTCQ+GDP_log" , "MTCQ+DEEA log",
"MTCQ+Ed", "GDP_log+DEEA_log" , "GDP_log+Ed" , "DEEA_log+Ed", "IPD_log+Nut_log+MTCQ",
"IPD_log+Nut_log+GDP_log" , "IPD_log+Nut_log+DEEA_log" , "IPD_log+Nut_log+Ed" ,
"IPD_log+MTCQ+GDP_log", "IPD_log+MTCQ+DEEA_log" , "IPD_log+MTCQ+Ed" ,
"IPD_log+GDP_log+DEEA_log" , "IPD_log+GDP_log+Ed" , "IPD_log+DEEA_log+Ed",
"Nut_log+MTCQ+GDP_log" , "Nut_log+MTCQ+DEEA_log" , "Nut_log+MTCQ+Ed",
"Nut_log+GDP_log+DEEA log", "Nut_log+GDP_log+Ed" , "Nut_log+DEEA_log+Ed",
"MTCQ+GDP_log+DEEA_log" , "MTCQ+GDP_log+Ed" , "MTCQ+DEEA_log+Ed", "GDP_log+DEEA_log+Ed"
, "IPD_log+Nut_log+MTCQ+GDP_log" , "IPD_log+Nut_log+MTCQ+DEEA_log" ,
"IPD_log+Nut_log+MTCQ+Ed" , "IPD_log+Nut_log+GDP_log+DEEA_log",
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"IPD_log+Nut_log+GDP_log+Ed" , "IPD_log+Nut_log+DEEA_log+Ed",
"IPD_log+MTCQ+GDP_log+DEEA _log" , "IPD_log+MTCQ+GDP_log+Ed",
"IPD_log+GDP_log+DEEA_log+Ed", "Nut_log+MTCQ+GDP_log+DEEA_log",
"Nut_log+MTCQ+GDP_log+Ed" , "Nut_log+MTCQ+DEEA log+Ed", "Nut_log+GDP_log+DEEA_log+Ed",
"MTCQ+GDP_log+DEEA_log+Ed", "IPD_log+Nut_log+MTCQ+GDP_log+DEEA_log" ,
"IPD_log+Nut_log+MTCQ+GDP_log+Ed", "IPD_log+Nut_log+MTCQ+DEEA_log+Ed",
"IPD_log+Nut_log+GDP_log+DEEA log+Ed", "IPD_log+MTCQ+GDP_log+DEEA log+Ed",
"Nut_log+MTCQ+GDP_log+DEEA_log+Ed" , "IPD_log+Nut_log+MTCQ+GDP_log+DEEA_log+Ed" , "1")

# Create a list of the models defined above

model.set<-list(mod1, mod2 , mod3 , mod4 , mod5, mod6, mod7 , mod8, mod9, mod10, modi1l,
mod12, mod13, mod14, mod15, modl6, modl7, mod18, mod19, mod20, mod21, mod22, mod23
, mod24 , mod25, mod26, mod27, mod28, mod29, mod30, mod31, mod32, mod33, mod34,
mod35, mod36, mod37, mod38, mod39, mod40, mod41, mod42 , mod43, mod44, mod45, mod4e
, mod47 , mod48, mod49, mod50, mod51, mod52 , mod53, mod54, mod55, mod56, mod57,
mod58 , mod59, mod60, mod61, mod62 , mod63)

# The function "aictab" produces a table which compares the AlCc values for each of the models
Model.table<-aictab(model.set,model.names)

# Save that table to file
write.table(Model.table,"Model.table.txt")
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